Advertisement

Chylomicron remnants potentiate phenylephrine-induced contractions of rat aorta by an endothelium-dependent mechanism

      Abstract

      The effects of chylomicron remnants on endothelium-dependent contraction of rat aorta were studied in vitro. Chylomicron remnant particles were prepared in vivo from male Wistar rats and were incubated with aortic rings for 45 min before concentration contraction response curves were constructed to phenylephrine. Both native and oxidised chylomicron remnants significantly increased vessel sensitivity to this agonist. Oxidised chylomicron remnants also significantly increased the maximum response. This potentiation was abolished by endothelial removal, but was still evident in the presence of Nω-nitro-l-arginine, with or without cyclo (d-α-aspartyl-l-prolyl-d-valyl-l-leucyl-d-tryptophyl) (BQ-123), indomethacin or superoxide dismutase. The study demonstrates, for the first time, that lipoprotein particles of dietary origin potentiate vascular contractions. This effect is endothelium-dependent, but is not due to inhibition of basal nitric oxide production or to stimulation of endothelin, superoxide or a cyclo-oxygenase-derived product.

      Keywords

      Abbreviations:

      EDCF, endothelium-derived constricting factor (), EDHF, endothelium-derived hyperpolarising factor (), 5-HT, 5-hydroxytryptamine (), IDM, indomethacin (), KHS, Krebs–Henseleit solution (), LDL, low density lipoprotein (), l-NOARG, Nω-nitro-l-arginine (), MDA, malondialdehyde (), NO, nitric oxide (), PE, phenylephrine (), SOD, superoxide dismutase (), TBARS, thiobarbituric acid reactive substances ()
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Woodman O.L.
        Modulation of vasoconstriction by endothelium-derived nitric oxide: the influence of vascular disease.
        Clin. Exp. Pharmacol. Physiol. 1995; 22: 585-593
        • Galle J.
        • Bassenge E.
        • Busse R.
        Oxidized low-density lipoproteins potentiate vasoconstrictions to various agonists by direct interaction with vascular smooth muscle.
        Circ. Res. 1990; 66: 1287-1293
        • Murohara T.
        • Kugiyama K.
        • Ohgushi M.
        • Sugiyama S.
        • Ohta Y.
        • Yasue H.
        LPC in oxidised LDL elicits vasocontraction and inhibits endothelium-dependent relaxation.
        Am. J. Physiol. 1994; 267: H2441-H2449
        • McPherson K.L.
        • Hamilton C.A.
        • Dominiczak A.F.
        • McIntyre M.
        • Reid J.L.
        Effects of oxidised LDL on basal and stimulated nitric oxide release in rat aorta.
        Br. J. Pharmacol. 1995; 116: 317P
        • Cox D.A.
        • Cohen M.L.
        Effects of oxidized low-density lipoprotein on vascular contraction and relaxation: clinical and pharmacological implications in atherosclerosis.
        Pharmacol. Rev. 1996; 48: 3-19
        • Singer A.H.
        • Tsao P.S.
        • Wang B.Y.
        • Bloch D.A.
        • Cooke J.P.
        Discordant effects of dietary l-arginine on vascular structure and reactivity in hypercholesterolaemic rabbits.
        J. Cardiovasc. Pharmacol. 1995; 25: 710-716
        • Verbeuren T.J.
        • Bonhomme E.
        • Laubie M.
        • Simonet S.
        Evidence for induction of nonendothelial NO synthase in aortas of cholesterol-fed rabbits.
        J. Cardiovasc. Pharmacol. 1993; 21: 841-845
        • Cox D.A.
        • Cohen M.L.
        Selective enhancement of 5-hydroxytryptamine-induced contraction of porcine coronary artery by oxidised low-density lipoprotein.
        J. Pharmacol. Exp. Ther. 1996; 276: 1095-1103
        • Vanhoutte P.M.
        • Miller V.M.
        Alpha 2-adrenoceptors and endothelium-derived relaxing factor.
        Am. J. Med. 1989; 87: 1S-5S
        • Vanhoutte P.M.
        Vascular effects of serotonin and ischaemia.
        J. Cardiovasc. Pharmacol. 1990; 16: S15-S19
        • Mamo J.C.L.
        • Wheeler J.R.
        Chylomicrons or their remnants penetrate rabbit thoracic aorta as efficiently as do smaller macromolecules, including low-density lipoprotein, high-density lipoprotein, and albumin.
        Cor. Art. Dis. 1994; 5: 695-705
        • Proctor S.D.
        • Mamo J.C.L.
        Arterial fatty lesions have increased uptake of chylomicron remnants but not low-density lipoproteins.
        Cor. Art. Dis. 1996; 7: 239-245
        • Cardona-Sanclemente L.E.
        • Medina R.
        • Born G.V.R.
        Effect of increasing doses of angiotensin II into normal and hypertensive Wistar rats on low density lipoprotein and fibrogen uptake by aortic walls.
        Proc. Natl. Acad. Sci. USA. 1994; 91: 3285-3288
        • Proctor S.D.
        • Pabla C.K.
        • Mamo J.C.L.
        Arterial uptake of chylomicrons and low density lipoproteins in insulin deficient rats and rabbits.
        Atherosclerosis. 1997; 134: 314
        • Yla-Herttuala S.
        • Jaakkola O.
        • Ehnholm C.
        • Tikkanen M.J.
        • Solakivi T.
        • Sarkioja T.
        • Nikkari T.
        Characterization of two lipoproteins containing apolipoproteins B and E from lesion-free human aortic intima.
        J. Lipid Res. 1988; 29: 563-572
        • Mamo J.C.L.
        • Elsegood C.L.
        • Gennat H.C.
        • Yu K.
        Degradation of chylomicron remnants by macrophages occurs via phagocytosis.
        Biochemistry. 1996; 35: 10210-10214
        • Yu K.C.-W.
        • Smith D.
        • Yamamoto A.
        • Kawaguchi A.
        • Harada-Shiba M.
        • Yakamura T.
        • Mamo J.C.L.
        Phagocytic degradation of chylomicron remnants by fibroblasts from subjects with homozygous familial hypercholesterolaemia.
        Clin. Sci. 1997; 92: 197-203
        • Yu K.C.-W.
        • Mamo J.C.L.
        Killing of arterial smooth muscle cells by chylomicron remnants.
        Biochem. Biophys. Res. Commun. 1996; 220: 68-71
        • Mahley R.W.
        • Weisgraber K.H.
        • Innerarity T.L.
        • Rall Jr., S.C.
        Genetic defects in lipoprotein metabolism.
        J. Am. Med. Assoc. 1991; 265: 78-83
        • Weintraub M.
        • Burstein A.
        • Rassin T.
        • Liron M.
        • Ringel Y.
        • Cabili S.
        • Blum M.
        • Peer G.
        • Iaina A.
        Severe defect in clearing postprandial chylomicron remnants in dialysis patients.
        Kidney Int. 1992; 42: 1247-1252
        • Grieve D.J.
        • Avella M.A.
        • Botham K.M.
        • Elliott J.
        Effects of chylomicrons and chylomicron remnants on endothelium-dependent relaxation of rat aorta.
        Eur. J. Pharmacol. 1998; 348: 181-190
        • Grieve D.J.
        • Avella M.A.
        • Elliott J.
        • Botham K.M.
        The influence of chylomicron remnants on endothelial cell function in the isolated perfused rat aorta.
        Atherosclerosis. 1998; 139: 273-281
        • Doi H.
        • Kugiyama K.
        • Ohgushi M.
        • Sugiyama S.
        • Matsumura T.
        • Ohta Y.
        • Nakano T.
        • Nakajima K.
        • Yasue H.
        Remnants of chylomicron and very low-density lipoprotein impair endothelium-dependent vasorelaxation.
        Atherosclerosis. 1998; 137: 341-349
        • Frew J.D.
        • Paisley K.
        • Martin W.
        Selective inhibition of basal but not agonist-stimulated activity of nitric oxide in rat aorta by NG-monomethyl-l-arginine.
        Br. J. Pharmacol. 1993; 110: 1003-1008
        • Mian K.B.
        • Martin W.
        Differential sensitivity of basal and acetylcholine-stimulated activity of nitric oxide to destruction by superoxide anion in rat aorta.
        Br. J. Pharmacol. 1995; 115: 993-1000
        • Deckert V.
        • Persegol L.
        • Viens L.
        • Lizard G.
        • Athias A.
        • Lallemant C.
        • Gambert P.
        • Lagrost L.
        Inhibitors of arterial relaxation among components of human oxidized low-density lipoproteins.
        Circulation. 1997; 95: 723-731
        • Steinbrecher U.P.
        • Parthasarathy S.
        • Leake D.S.
        • Witztum J.L.
        • Steinberg D.
        Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids.
        Proc. Natl. Acad. Sci. USA. 1984; 81: 3883-3887
        • Chen G.
        • Suzuki H.
        • Weston A.H.
        Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels.
        Br. J. Pharmacol. 1988; 95: 1165-1174
        • Shimokawa H.
        • Yasutake H.
        • Fujii K.
        • et al.
        The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation.
        J. Cardiovasc. Pharmacol. 1996; 28: 703-711
        • Noll G.
        • Luscher T.F.
        Influence of lipoproteins on endothelial function.
        Thromb. Res. 1994; 74: S45-S54
        • Boulanger C.M.
        • Tanner F.C.
        • Bea M.-L.
        • Hahn A.W.A.
        • Werner A.
        • Luscher T.F.
        Oxidized low-density lipoproteins induce mRNA expression and release of endothelin from human and porcine endothelium.
        Circ. Res. 1992; 70: 1191-1197
        • Arendt R.M.
        • Wilbert-Lampen U.
        • Heucke L.
        • Schmoeckel M.
        • Suhler K.
        • Richter W.O.
        Increased endothelin plasma concentrations in patients with coronary artery disease or hyperlipoproteinemia without coronary events.
        Res. Exp. Med. 1993; 193: 225-230
        • Mangiafico R.A.
        • Malatino L.S.
        • Santonocito M.
        • Spada R.S.
        • Polizzi G.
        • Tamburino G.
        Raised plasma endothelin-1 concentrations in patients with primary hypercholesterolemia without evidence of atherosclerosis.
        Int. Angiol. 1996; 15: 240-244
        • Jones G.T.
        • van Rij A.M.
        • Solomon C.
        • Thomson I.A.
        • Packer S.G.K.
        Endothelin-1 is increased overlying atherosclerotic plaques in human arteries.
        Atherosclerosis. 1996; 124: 25-35
        • Ohara Y.
        • Peterson T.E.
        • Harrison D.G.
        Hypercholesterolemia increases endothelial superoxide anion production.
        J. Clin. Invest. 1993; 91: 2546-2551
        • Kawaguchi H.
        • Ishibashi T.
        • Imai Y.
        Increased thromboxane B2 biosynthesis in platelets.
        Lipids. 1982; 17: 577-584
        • Kimura H.
        • Minakami H.
        • Kimura S.
        • Sakurai T.
        • Nakamura T.
        • Kurashige S.
        • Nakano M.
        • Shoji A.
        Release of superoxide radicals by mouse macrophages stimulated by oxidative modification of glycated low density lipoproteins.
        Atherosclerosis. 1995; 118: 1-8
        • Maier J.A.
        • Barenghi L.
        • Bradamante S.
        • Pagani F.
        Modulators of oxidized LDL-induced hyperadhesiveness in human endothelial cells.
        Biochem. Biophys. Res. Commun. 1994; 204: 673-677
        • Warner T.D.
        • Allcock G.H.
        • Vane J.R.
        Reversal of established responses to endothelin-1 in vivo and in vitro by the endothelin antagonists, BQ-123 and PD 145065.
        Br. J. Pharmacol. 1994; 112: 207-213
        • Auch-Schwelk W.
        • Katusic Z.S.
        • Vanhoutte P.M.
        Contractions to oxygen–derived free radicals are augmented in aorta of the spontaneously hypertensive rat.
        Hypertension. 1989; 13: 859-864